Here is the fuel equation from the manual...
The adaptive fuel strategy uses O2 sensors for fuel feedback. The fuel equation includes short and long term fuel trim modifiers:
FUEL MASS = AIR MASS * SHRTFT * LONGFT/EQUIV_RATIO * 14.64
Where:
Fuel Mass = desired fuel mass Air Mass = measured air mass, from MAF sensor
SHRTFT = Short Term Fuel Trim, calculated
LONGFT = Long Term Fuel Trim, learned table value, stored in Keep Alive Memory EQUIV_RATIO = Desired equivalence ratio, 1.0 = stoich, > 1.0 is lean, < 1.0 is rich 14.64 = Stoichiometric ratio for gasoline
A conventional O2 sensor (not a wide-range sensor) can only indicate if the mixture is richer or leaner than stoichiometric. During closed loop operation, short term fuel trim values are calculated by the PCM using oxygen sensor inputs in order to maintain a stoichiometric air/fuel ratio. The PCM is constantly making adjustments to the short term fuel trim, which causes the oxygen sensor voltage to switch from rich to lean around the stoichiometric point. As long as the short term fuel trim is able to cause the oxygen sensor voltage to switch, a stoichiometric air/fuel ratio is maintained.
When initially entering closed loop fuel, SHRTFT starts 1.0 and begins adding or subtracting fuel in order to make the oxygen sensor switch from its current state. If the oxygen sensor signal sent to the PCM is greater than 0.45 volts, the PCM considers the mixture rich and SHRTFT shortens the injector pulse width. When the cylinder fires using the new injector pulse width, the exhaust contains more oxygen. Now when the exhaust passes the oxygen sensor, it causes the voltage to switch below 0.45 volts, the PCM considers the mixture lean, and SHRTFT lengthens the injector pulse width. This cycle continues as long as the fuel system is in closed loop operation.